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Forced convection film condensation 
on a horizontal tube-effect of surface 

temperature variation 
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Abstract-In free and forced convection condensation on a horizontal tube. measurements show that the 
surface temperature variation with angle approximately follows a cosine distribution. For forced convection 
condensation of steam. relatively low (with respect to isothermal-surfilce theoretical values) observed 
vapour-side heat-transfer coefficients have been attributed to surface temperature non-uniformity. A recent 
theoretical study ofthe effect of wall temperature variation in freeconvection condensation shows negligible 
erect on the average heat-transfer coeficient. In the present paper it is shown that. when a simple surpdcc 
shear stress approximation, which gives satisfactory values for the mean heat-transfer coefficient for an 
isothermal tube, is adopted with variable wall temperature. /I$IP~ mean surFace heat-transfer coeflicients 
are obtained. This seems to be in contradiction with results of conjugate (vapour-to-coolant) solutions 
which predict variable wall temperature and /OWW mean surface heat-transfer coefficients. Reasons for this 

apparent anomaly are advanced. 

INTRODUCTION 

FOR LAMINAR film condensation with uniform prop- 
erties and negligible vapour velocity, the assumptions 
of the simple Nusselt theory [I] have been found in 
later and more complete studies to be generally valid. 
Nusselt’s theory has also been well supported by 
experiment. particularly where care has been taken to 
avoid dropwise condensation and the effects of non- 
condensing gases. In view of the fact that the tube- 
wall temperature (taken to be uniform in the Nusselt 
theory and later refinements) has been observed to 
vary around the tube by amounts comparable with 
the mean temperature difference across the con- 
densate film [2-91, the agreement between experiment 
and theory might seem somewhat surprising. Memory 
and Rose [7], however, have recently demonstrated 
that when a cosine distribution of wall temperature 
(i.e. close to measured wall temperature variation 
[7-91) is used, together with the Nusselt approxi- 
mations for the condensate film, the effect on the mean 
surface heat-transfer coefficient is negligible, despite 
the fact that the local film thickness and local heat 
flux depend strongly on the amplitude of the wall 
temperature variation. Thus, for free convection lami- 
nar film condensation on a horizontal tube the mean 
Nusselt number can be calculated with good accuracy 
from 
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(1) 

For forced convection condensation on a horizontal 
isothermal cylinder with vertical vapour downflow, 
Shekriladze and Gomelauri [IO] obtained numerical 
solutions by using an approximate expression for the 
vapour shear stress on the condensate film together 
with the Nusselt assumptions. These were shown by 
Rose [I I] to be represented to within 0.4% by : 

0.9+0.728F' 2 ~~)g’?=-- 
(1+3.44F' '+F)' 4 (2) 

where Nu is the mean Nusselt number, k is the ‘two- 
phase Reynolds number’ (vapour free-stream velocity 
and condensate properties) and F is a dimensionless 
parameter which measures the relative importance of 
gravity and vapour velocity for the motion of the 
condensate film. 

A more recent solution using a better representation 
of the vapour shear stress [l2, 131, including deter- 
mination of, and allowance for, vapour boundary- 
layer separation, gives results that do not differ greatly 
from equation (2) except at low condensation rates 
(see also ref. [ 141). 

As shown in ref. [8], experimental data from several 
different investigations for condensation of steam in 
downflow over a horizontal tube indicate heat-trans- 
fer coefficients lower than predicted by equation (2) 
and in fair agreement with an empirical correlation of 
Fujii CI rrl. [ 121, 

GFc- ’ ? = 0.96F':'. (3) 
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a/AT, see equations (4) and (9) 
amplitude of surface temperature 
variation, see equation (4) 
mean surface temperature, see equation (4) 
diameter of tube 
(Gr/%)- ($r,$kAT) 
p2gd3/p2 
specific force of gravity 
specific enthalpy of evaporation 
thermal conductivity of condensate 
local condensation mass flux 
mean Nusselt number, see equation (17) 
local heat flux 
dimensionless local heat flux, see equation 
(1% 
mean heat flux, see equation (I 6) 
radius of tube 
uzpdlp 
local surface temperature of tube 

-0 

AT 

AT 

vapour temperature 
approach velocity of vapour 
tangential velocity at outer ‘edge’ of 
vapour boundary layer 
tangential velocity in condensate film 
radial distance from tube surface 
dimensionless condensate film thickness, 
see equation (11) 
valueofzat4=0 
local temperature difference across 
condensate film 
mean temperature difference across 
condensate film. 

Greek symbols 
6 local condensate film thickness 
P viscosity of condensate 
P density of condensate 
4 angle measured from top of tube. 

Equations (I), (2) and (3) are compared in Fig. I. 
(Note that equation (1) may be written 
z %- I’* = 0.728F”“). It is seen that at high vapour 
velocity (low F) the experimental data represented by 
equation (3) fall well below theory (equation (2)). 

As noted in ref. [9] the surface temperature variation 
is most pronounced when the vapour-side heat-trans- 
fer coefficient is much larger than that for the coolant- 
side. Thus, for the case of steam, where the thermal 
conductivity of the condensate is relatively high, the 
wall temperature depends more strongly on position 
around the tube. It has been suggested that this may 
explain the low experimental heat-transfer 
coefficients. 

Honda and Fujii [ 151 have carried out conjugate 
(vapour-to-coolant) solutions using a constant inside 
(coolant) coefficient and solving the two-dimensional 

J 
conduction problem in the tube wall. This approach 
led to lower mean vapour-side heat-transfer co- 
efficients and approximately cosine surface tem- 
perature distributions, i.e. the theoretical results were 
in general accord with experiment. It is shown in 
the present paper that a cosine surface temperature 
distribution in forced convection condensation leads 
to higher average vapour-side heat-transfer co- 
efficients when the ShekriladzeGomelauri shear 
stress approximation is used. 

FORCED CONVECTION CONDENSATION WITH 
VARIABLE WALL TEMPERATURE 

Recent measurements [7,16] for condensation of 
ethylene glycol in vertical downflow over a horizontal 
tube, confirm that surface temperature distributions 
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FIG. 1. Comparison of equations (I), (2) and (3). 
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can be very closely represented by equations of the 
form 

T,=acos~+b. (4) 

For the purpose of investigating the effect of surface 
temperature variation, the approach used by 
Shekriladze and Gomelauri [IO] may be adopted while 
using equation (4) rather than uniform wall tem- 
perature. Inertia, convection and pressure gradient in 
the condensate film are neglected. As in the Nusselt 
theory, the condensate film thickness is considered 
small in comparison with the tube radius. In the first 
instance gravity effects are also ignored, i.e. the 
motion of the condensate film is governed entirely by 
shear stress from the moving vapour and viscosity. A 
tangential momentum balance for the condensate film 
gives 

Following the analysis of Shekriladze and 
Gomelauri [IO], i.e. using the asymptotic (infinite con- 
densation rate) approximation for the shear stress at 
the vapour-condensate interface and assuming poten- 
tial flow outside the vapour boundary layer, the 
boundary condition 

au 2mU, sin 4 
&= p 

aty=d (6) 

is obtainedt. nz is the local condensation mass flux. 
As in the Nusselt theory, integration of equation 

(S), with the conditions of zero velocity at the wall 
and equation (6), gives the velocity distribution across 
the condensate film 

2mU, sin t$ 
li= * y. (7) 

P 

A mass balance for a condensate film element 
together with the assumption of radial conduction in 
the film gives 

2pU,k d 
m = K a(6ATsin$) 03) 

Where AT is the local temperature difference across 
the condensate film, assumed constant in the theory 
of Shekriladze and Gomelauri [IO]. Here we use 

AT= AT(l-ACOSC#I) (9) 

which follows from equation (4), where AT is the 
mean temperature difference across the condensate 
film given by 

and A is a constant (0 < A < I). Substituting for AT 

t Equation (6) also requires (I’ >> I+. 

from equation (9) in equation (8) and replacing 6 by 
the dimensionless film thickness 

gives 

d-+ 7 2z(cos r$ - A cos 24) I 

d4 sm 4(l -A cos 4) 
- -= 0. (12) 

sin 4 

Equation (12) may be solved for given values of A, 
subject to the boundary condition 

dz 0 &j ,$=” = O. (13) 

Before proceeding to the results of numerical solu- 
tions, the dimensionless film thickness z0 at 4 = 0 may 
be obtained directly from equations (12) and (l3), i.e. 
z0 = l/2. It is interesting to note that the condensate 
film thickness at the forward stagnation point is the 
same regardless of the value of A and is not zero when 
A = I, i.e. when AT+=” = 0. 

Numerically-obtained solutions of equation (12) 
for various values of A, giving the dependence of the 
dimensionless condensate film thickness on angle, are 
shown in Fig. 2. It is seen that for uniform wall tem- 
perature (Shekriladze-Gomelauri case, A = 0), the 
film thickness increases continuously with C#J. For 
larger values of A (stronger temperature variation 
around the tube) the film thickness at first decreases 
to a minimum before increasing. The fact that the film 
is relatively thick near 4 = 0 is due to the low surface 
shear stress at 4 - 0 (see equation (6)). The shear 
stress is even smaller as A + I since, in this case 
m+Oas4-+0. 

The local heat flux is given by 

kAT(l-ACOS~) 
9= 6 

3r 

(14) 
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FIG. 2. Dependence of dimensionless condensate film thick- 
ness on angle for forced convection condensation. 
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which may be non-dimensionalised to give 

The dependence of q* on Cp is shown in Fig. 3. It is 
seen that in the Shekriiadze-Gomelauri case when 
A = 0. the heat flux falls continuously around the 
tube since the temperature difference is uniform and 
the condensate film thickens continuously. For large 
values of A. cl* is at first relatively small owing to the 
lower values of AT at smaller 4. As 4 increases, q* at 
first increases, owing to the increase in AT, until the 
effect of the thickening condensate film outweighs the 
effect of the increasing value of AT and q* passes 
through a maximum before falling to zero when the 
film thickness becomes infinite as 4 + rr. 

The mean heat flux for the tube is given by 

qd4 

and the mean Nusselt number by 

Nu=?CI. 
ATk 

(17) 

Substituting from equations (15) and (16) we obtain 

Using numerical solutions of equation (12) the 
integral in equation (I 8) has been evaluated and the 
results, for various values of A, are given in Table I. 
It may be seen from Table I that % b “’ increases 
from the Shekriladze-Gomelauri value of 0.9, with 

2 

9’ ’ 

0 n/2 IT 

Angle around tuhc (rad) 
FIG. 3. Dependence of dimensionless heat flux on angle for 

forced convection condensation. 

Table I. Dependence of mean Nusselt number on a forced 
convection film condensation 

0 0.900 
0.2 0.906 
0.4 0.924 
0.6 0.953 
0.8 0.992 
I.0 1.040 

increasing A, to a maximum value of I .04 at A = I. 
Thus for a cosine temperature distribution, the mean 
Nusselt number is independent of amplitude for free 
convection (see Memory and Rose [7]) and increases 
in forced convection condensation when the Shek- 
riladze-Gomelauri surface shear stress approximation 
is used. We thus anticipate intermediate behaviour for 
the case of combined free and forced convection. 

COMBINED FORCED AND FREE CONVECTION 

For vertical vapour downflow with gravity 
included, a tangential momentum balance for the con- 
densate film gives 

With the boundary condition given by equation (6) 
and proceeding as before we obtain, for the local 
condensation mass flux 

2p’g d 
nz = w d~(S’sin 4)+ 2$$ $(GATsin 4). 

(20) 

Substituting for ATfrom equation (9) and non-dimen- 
sionalising. equation (20) becomes 

dz 
(Fs+I-Acos~$)sin4d~ 

~cos~+cos~-Acos24 
> 

-I 

+Acos4=0. (21) 

Again, the symmetry condition (equation (13)) 
enables us to determine the film thickness at the top 
of the tube without solving the differential equation. 
In this case 

z. = --1+,/(1+2F/{3(1-A)}) 
2F/{3(1-A)} (22) 

It may be seen that for F + co (free convection limit) 
7 - 0 when A = 1 in agreement with the result found “0 - 
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Table 2. Dependence of mean Nusselt number on A and F 
for combined free and forced convection condensation 

.A F= 100 F= IO F= I F=0.1F=0.01F=0.001 

0 I .oo 1 .oo 1.00 I .oo I .oo I .oo 
0.2 I .oo I .oo 1.00 1.01 1.01 1.01 
0.4 1.00 I .oo I .oo 1.02 1.03 1.03 
0.6 I .oo 1.01 1.02 1.05 I .06 I .06 
0.8 1.01 I .02 I .05 1.09 1.10 1.10 
I.0 1.01 I .04 I .09 1.14 1.16 1.16 

by Memory and Rose [7], while for F + 0 (shear con- 
trolled limit), :r, = l/2 as found above. 

Equation (21) may be solved numerically, with 
boundary condition equation (13) to give the depen- 
dence of: on 4 for given values of A and F. The local 
heat flux and local dimensionless heat flux are again 
given by equations (14) and (15). The mean Nusselt 
number may be obtained using equation (18) with the 
values of z from the solution of equation (21). 

A selection of the results obtained is given in Table 
2 and Fig. 4. Table 2 gives values of Nusselt number 
normalized by those given by equation (2). As noted 
earlier, equation (2) is a very close approximation to 
the result for the isothermal wall case. It is seen that 
when A = 0, the normalised Nusselt number is unity 
for all F as expected. For higher values of A the 
normalised Nusselt number remains close to unity at 
high F where gravity dominates, in accordance with 
the results of Memory and Rose [7]. At low F the 
normalised Nusselt number increases with increasing 
A in accordance with the present results for the shear 
controlled limit. 

The same conclusions can be drawn from Fig. 4. At 
high values of F (gravity controlled case) the curves 
converge to the Nusselt solution for all values of A. 

FIG. 4. Dependence 

At low values of F (shear controlled case), % k- I” 
increases with increasing values of A. 

CONCLUSION 

Comparison of the present results, obtained using 
the Shekriladze and Gomelauri [IO] surface shear 
stress approximation, with the conjugate solutions for 
steam obtained by Honda and Fujii [ 151 where a more 
realistic shear stress model was used, indicates that 
the Shekriladze and Gomelauri approach, although 
giving satisfactory values of the mean heat-transfer 
coefficient for an isothermal tube, leads to over- 
estimates when the surface temperature of the tube 
varies significantly. 

The most probable explanation would seem to be 
that equation (6) underestimates the surface shear 
stress on the upper part of the tube where AT, and 
hence y, are relatively small, and overestimates the 
surface shear stress on the lower part of the tube 
(after vapour boundary layer separation) where AT is 
relatively high. The net effect of using equation (6) is 
therefore to increase the calculated total heat transfer 
and hence the mean heat-transfer coefficient. 

A second, though probably less important, factor 
contributing to the discrepancy between the present 
results and the conjugate solutions for steam of 
Honda and Fujii [ 151, may be error in evaluating AT 
from the temperature distributions calculated in the 
conjugate theory. The mean vapour-to-surface tem- 
perature difference is given by 

As r#~ + K the calculated values of y and 6 become 
increasingly unreliable since the assumption 6 K R 
becomes invalid. That this leads to error in uniform 

10-Z 10-I I00 I 

F 

OfiGk”’ on parameter A for combined forced and free : convection. 
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q solutions, where the integral in equation (23) is 
significantly affected by large and inaccurate values of 
6 near ct, = rr, was discussed in ref. [14]. In the general 

8 

case the extent to which the erroneous values of the 
q6 product near 4 = n affect the integral in equation 
(23) is not evident, since while 6 + co. q -+ 0. 9. 
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